skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Goodson, Theodore"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Goodson, Theodore; McCoy, Anne B (Ed.)
    Ultrafast excitation of nanoparticles can excite the acoustic vibrational modes of the structure that correlate with the expansion coordinates. These modes are frequently seen in transient absorption experiments on metal nanoparticle samples and occasionally for semiconductors. The aim of this review is to give an overview of the physical chemistry of nanostructure acoustic vibrations. The issues discussed include the excitation mechanism, how to calculate the mode frequencies using continuum mechanics, and the factors that control vibrational damping. Recent results that demonstrate that the high frequencies inherent to the acoustic modes of nanomaterials trigger a viscoelastic response in surrounding liquids are also discussed, as well as vibrational coupling between nanostructures and mode hybridization within the nanostructures. Mode hybridization provides a way of manipulating the lifetimes of the acoustic modes, which is potentially useful for applications such as mass sensing. 
    more » « less
    Free, publicly-accessible full text available January 22, 2026